Equivariant brauergroups in algebraic number theory
نویسندگان
چکیده
© Mémoires de la S. M. F., 1971, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
منابع مشابه
Equivariant Intersection Theory
The purpose of this paper is to develop an equivariant intersection theory for actions of linear algebraic groups on algebraic schemes. The theory is based on our construction of equivariant Chow groups. They are algebraic analogues of equivariant cohomology groups which have all the functorial properties of ordinary Chow groups. In addition, they enjoy many of the properties of equivariant coh...
متن کاملEquivariant Algebraic Cobordism
We construct an equivariant algebraic cobordism theory for schemes with an action by a linear algebraic group over a field of characteristic zero.
متن کاملResearch Statement Emanuele Dotto 2015
My research interests range between algebraic K-theory and equivariant homotopy theory. I am currently extending the trace methods of [16],[30],[49] to the Real algebraic K-theory of rings and ring spectra with Wall antistructures of [39], in parallel with an equivariant theory of Goodwillie calculus of functors [35]. My current main objective is to prove a DundasGoodwillie-McCarthy theorem for...
متن کاملSpectral Mackey Functors and Equivariant Algebraic K - Theory ( Ii )
We study the “higher algebra” of spectral Mackey functors, which the first named author introduced in Part I of this paper. In particular, armed with our new theory of symmetric promonoidal ∞-categories and a suitable generalization of the second named author’s Day convolution, we endow the∞-category of Mackey functors with a wellbehaved symmetric monoidal structure. This makes it possible to s...
متن کاملRestriction to Finite-index Subgroups as Étale Extensions in Topology, Kk-theory and Geometry
For equivariant stable homotopy theory, equivariant KK-theory and equivariant derived categories, we show how restriction to a subgroup of finite index yields a finite commutative separable extension, analogous to finite étale extensions in algebraic geometry.
متن کامل